New techniques for geographic routing

نویسنده

  • Ben Leong
چکیده

As wireless sensor networks continue to grow in size, we are faced with the prospect of emerging wireless networks with hundreds or thousands of nodes. Geographic routing algorithms are a promising alternative to tradition ad hoc routing algorithms in this new domain for point-to-point routing, but deployments of such algorithms are currently uncommon because of some practical difficulties. This dissertation explores techniques that address two major issues in the deployment of geographic routing algorithms: (i) the costs associated with distributed planarization and (ii) the unavailability of location information. We present and evaluate two new algorithms for geographic routing: Greedy Distributed Spanning Tree Routing (GDSTR) and Greedy Embedding Spring Coordinates (GSpring). Unlike previous geographic routing algorithms which require the planarization of the network connectivity graph, GDSTR switches to routing on a spanning tree instead of a planar graph when packets end up at dead ends during greedy forwarding. To choose a direction on the tree that is most likely to make progress towards the destination, each GDSTR node maintains a summary of the area covered by the subtree below each of its tree neighbors using convex hulls. This distributed data structure is called a hull tree. GDSTR not only requires an order of magnitude less bandwidth to maintain these hull trees than CLDP, the only distributed planarization algorithm that is known to work with practical radio networks, it often achieves better routing performance than previous planarization-based geographic routing algorithms. GSpring is a new virtual coordinate assignment algorithm that derives good coordinates for geographic routing when location information is not available. Starting from a set of initial coordinates for a set of elected perimeter nodes, GSpring uses a modified spring relaxation algorithm to incrementally adjust virtual coordinates to increase the convexity of voids in the virtual routing topology. This reduces the probability that packets will end up in dead ends during greedy forwarding, and improves the routing performance of existing geographic routing algorithms. The coordinates derived by GSpring yield comparable routing performance to that for actual physical coordinates and significantly better performance than that for NoGeo, the best existing algorithm for deriving virtual coordinates for geographic routing. Furthermore, GSpring is the first known algorithm that is able to derive coordinates that achieve better geographic routing performance than actual physical coordinates for networks with obstacles. Thesis Supervisor: Barbara Liskov Title: Ford Professor of Engineering

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geographic and Clustering Routing for Energy Saving in Wireless Sensor Network with Pair of Node Groups

Recently, wireless sensor network (WSN) is the popular scope of research. It uses too many applications such as military and non-military. WSN is a base of the Internet of Things (IoT), pervasive computing. It consists of many nodes which are deployed in a specific filed for sense and forward data to the destination node. Routing in WSN is a very important issue because of the limitation of the...

متن کامل

Routing Hole Handling Techniques for Wireless Sensor Networks: A Review

A Wireless Sensor Network consists of several tiny devices which have the capability to sense and compute the environmental phenomenon. These sensor nodes are deployed in remote areas without any physical protections. A Wireless Sensor Network can have various types of anomalies due to some random deployment of nodes, obstruction and physical destructions. These anomalies can diminish the sensi...

متن کامل

STCS-GAF: Spatio-Temporal Compressive Sensing in Wireless Sensor Networks- A GAF-Based Approach

Routing and data aggregation are two important techniques for reducing communication cost of wireless sensor networks (WSNs). To minimize communication cost, routing methods can be merged with data aggregation techniques. Compressive sensing (CS) is one of the effective techniques for aggregating network data, which can reduce the cost of communication by reducing the amount of routed data to t...

متن کامل

Forest road design combining common design techniques and GIS (Case Study: 2nd series of Liresar Forest)

Nowadays, it is necessary to apply modern techniques for the design of road networks, especially roads passing through ecosystems such as forests, in order to reduce operating costs, prevent further degradation of the environment, increase road efficiency and achieve sustainable development goals. In this paper, a new way of designing the road is presented. New design method has the ability to ...

متن کامل

Real-Time Routing in Mobile Networks using GPS and GIS Techniques

In this paper, a discussion of employing Global Positioning System (GPS) and geographic information system (GIS) technologies for packet routing strategies in ad hoc mobile wireless networks is presented. Mobile network architectures and existing packet routing schemes are briefly discussed to illustrate how GPS and GIS techniques can be beneficially employed. Telegeoinformatics, a new discipli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006